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This article deals with the analysis of the functional iteration, denoted Generalized Gum-
mel Map (GGM), proposed in [C. de Falco, A.L. Lacaita, E. Gatti, R. Sacco, Quantum-Corrected
Drift-Diffusion Models for Transport in Semiconductor Devices, J. Comp. Phys. 204 (2)
(2005) 533–561] for the decoupled solution of the Quantum Drift-Diffusion (QDD) model.
The solution of the problem is characterized as being a fixed point of the GGM, which
permits the establishment of a close link between the theoretical existence analysis and
the implementation of a numerical tool, which was lacking in previous non-constructive
proofs [N.B. Abdallah, A. Unterreiter, On the stationary quantum drift-diffusion model,
Z. Angew. Math. Phys. 49 (1998) 251–275, R. Pinnau, A. Unterreiter, The stationary
current–voltage characteristics of the quantum drift-diffusion model, SIAM J. Numer. Anal.
37 (1) (1999) 211–245]. The finite element approximation of the GGM is illustrated, and
the main properties of the numerical fixed point map (discrete maximum principle and
order of convergence) are discussed. Numerical results on realistic nanoscale devices are
included to support the theoretical conclusions.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction and motivation

The continuous advancement of the semiconductor industry makes it unavoidable to resort to numerical simulation to
predict the electric properties of devices of the next generation well before their construction is actually feasible. In the cur-
rent technology, the channel length of metal oxide semiconductor field effect transistors (MOSFETs) is of the order of tens of
nanometers and the thickness of the oxide is of a few nanometers. Because of such small dimensions, quantum confinement
and tunneling affect the performance of nanoscale devices in two main respects. First of all, quantization of energy states for
electrons confined in the channel produces a shift of the charge peak, increasing the ‘‘equivalent oxide thickness” in such a
way that the coupling of the gate and channel voltages is reduced. Secondly, the penetration of electrons under the channel
barrier effectively smooths and lowers such barrier, increasing the off-state leakage current. To limit quantization effects,
new device structures and geometries are investigated to overcome the traditional single-gate MOS transistor (see
[36,10], Chapter 1). In any event, irrespective of the adopted device technology, it is a fact that, on the one hand, quantum
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effects cannot be captured by a classical drift-diffusion (DD) description, and that, on the other hand, the ‘‘full quantum”
models proposed in the literature (Wigner transport equation [16], non-equilibrium Green functions [9]) are, as of now,
too costly to be adopted in industrial applications. This is the reason for the development of ‘‘quantum corrected drift-dif-
fusion” (QCDD) models that are based on the introduction of a correction potential in the DD equation to account for quan-
tum effects on the spatial distribution of charge carriers within the devices (see [3,32]). By adopting such models the
computational complexity can be contained within reasonable limits at the cost of neglecting quantum effects on transport
(coherent transport, interferences, reflections), which can be considered of higher order for devices of gate length higher than
10 nm [26].

In Refs. [11,10], a general mathematical framework for QCDD models has been proposed and subjected to extensive inves-
tigation in the numerical study of advanced nanoscale MOSFET and double-gate (DG) MOSFET devices. One of the main con-
tributions of the cited references consists of the introduction of a fixed point map, named generalized Gummel map (GGM),
for the iterative solution of the nonlinearly coupled system of model equations. The GGM is the natural extension to the
quantum-corrected setting of the Gummel’s decoupled algorithm traditionally used in DD simulation [15,27,19], and has
two significant benefits. The first benefit is to maintain the same functional structure irrespective of the specific choice of
the quantum-corrected model. The second benefit, which applies to the particular case of the quantum DD (QDD) model,
the object of this article, is to provide an effective computational tool for the numerical solution of the variational formulation
proposed in Refs. [1,31] to treat the quantum correction to the DD system. In the present article, we intend to characterize
the solution of the QDD transport model as being a fixed point of the GGM. This establishes a close link between the theo-
retical existence analysis and the implementation of a numerical tool which was lacking in previous non-constructive proofs
(cf. [1,31]). The principal instruments used to demonstrate the existence of a fixed point of the GGM are (i) the introduction
of a truncation operator, to prevent the occurrence of singularities in the quantum corrections, as proposed in Ref. [1]; (ii) the
extension of the theory of invariant regions, used in [19] in the DD case, to the case of systems of nonlinear reaction–diffu-
sion partial differential equations (PDEs) in non-gradient form; and (iii) a homotopy method based on the general theory
developed in [17] to select the solution of each equation yielding the quantum corrections, for which uniqueness is not guar-
anteed due to the lack of monotonicity of the semi-linear terms. Once the existence of a fixed point of the map is proved, the
finite element approximation of the GGM is worked out along the same lines as in the classical DD setting, ending up with
discrete maximum principles and optimal order of convergence.

A brief outline of the article is as follows. In Section 2, we introduce the QDD model and the associated scaling and mod-
eling parameters. In Section 3 we illustrate the GGM for the iterative solution of the QDD model, and address some compu-
tational remarks on the structure of the algorithm in Section 4. The analysis of existence of a fixed point of the GGM is carried
out in Section 5, while in Section 6 we illustrate the discretized model and the numerical counterpart of the GGM. In Section
7, we conduct a series of numerical experiments to demonstrate the validity of the GGM applied to the simulation of realistic
nanoscale devices, while in Section 8 we draw some conclusions and future work perspectives. In Appendices A, B and C we
illustrate the main theoretical properties and instruments needed to extend the theory of invariant regions to the treatment
of the QDD model.

2. The quantum drift-diffusion model

Under isothermal and steady-state regimes, the quantum drift-diffusion (QDD) model for nanoscale semiconductor de-
vice simulation can be written in the following dimensionless form [2,21]:
�divðk2$uÞ ¼ p� nþ D;

�d2
nD

ffiffiffi
n
p
þ

ffiffiffi
n
p
ðun �uþ lnðnÞÞ ¼ 0;

Gn ¼ un �uþ lnðnÞ;
�d2

pD
ffiffiffi
p
p þ ffiffiffi

p
p ð�up þuþ lnðpÞÞ ¼ 0;

Gp ¼ up �u� lnðpÞ;
�divðlnð$n� n$ðuþ GnÞÞÞ ¼ �U;

�divðlpð$pþ p$ðuþ GpÞÞÞ ¼ �U:

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð1Þ
The structure of (1), comprising algebraic and partial differential equations, matches closely the fixed point map that is
adopted for its iterative solution, and qualifies the QDD model as a special member of the family of quantum-corrected
DD (QCDD) models presented and extensively validated in [11]. In detail, (1)1 is the Poisson equation for the electrostatic
potential u, (1)6–(1)7 are the carrier continuity equations for the electron and hole carrier concentrations n and p, while
(1)2–(1)3 and (1)4–(1)5 provide a self-consistent definition of the quantum corrections Gn and Gp as functions of u, n, p
and the quantum quasi–Fermi potentials un and up. Inverting (1)3 and (1)5 yields the generalized Maxwell–Boltzmann
statistics
n ¼ expððuþ GnÞ �unÞ; p ¼ expðup � ðuþ GpÞÞ: ð2Þ
System (1) is to be solved in a polyhedral semiconductor device domain X � Rd, d ¼ 1;2;3, with boundary C ¼ CD [ CN [ CA

and outward unit normal vector n, having set CD ¼ Cþ [ C0. The pairwise disjoint partitions of Cþ and C0 physically



Fig. 1. Two-dimensional cross-section of the semiconductor device.
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represent the ohmic contacts and material interfaces, while CN and CA physically represent the portions of the boundary sep-
arating the device domain from the external environment and neighboring devices. Boundary conditions for system (1) are
enforced as follows:
u ¼ uD; n ¼ nD; p ¼ pD on Cþ;

u ¼ uD; n ¼ p ¼ 0 on C0;

$u � n ¼ Jn � n ¼ Jp � n ¼ 0 on CN ;

8><>: ð3Þ
having defined the current densities Jn ¼ lnð$n� n$ðuþ GnÞÞ and Jp ¼ �lpð$pþ p$ðuþ GpÞÞ. The boundary data uD, nD and
pD are computed assuming charge neutrality and thermal equilibrium on Cþ, while on C0 the prescribed value of uD is the
external voltage applied at the gate contact up to the voltage drop across the gate oxide layer. Our choice of the geometry
and of the boundary conditions is a rather crude simplification of a MOSFET, because X does not comprise the oxide buffer
region that is located over the interface C0, and a two-dimensional example is depicted in Fig. 1. It is worth noting, however,
that the iterative solution map proposed in this work can be readily extended to deal also with the case where the oxide
region is included in the simulation domain, as documented by the numerical experiments discussed in Section 7 and in
Ref. [11]. Some remarks are in order about the scaling and modeling parameters in (1). The quantities k, dn and dp are positive
singular perturbation parameters resulting from the application of a scaling procedure [11]. Setting dn ¼ dp ¼ 0, which cor-
responds to formally performing the classical limit �h! 0, allows the recovery of the standard DD model. We refer to [11,
Section 2.4], for the explicit expressions of the parameters and of their numerical values. The quantity D is a given function
and represents the doping profile of the device. We assume that D 2 L1ðXÞ, with Dmin ¼ infXD and Dmax ¼ supXD, where the
operators infX and supX denote the essential infimum and the essential supremum in X, respectively. The quantities ln and
lp are the carrier mobilities, and depend in a quite complex manner on the problem unknowns and on several other physical
parameters, as extensively discussed in [35, Chapter 4]. We assume that lm; m ¼ n; p are strictly positive bounded functions,
referring to [19, Section 4.2], for a precise characterization of the polynomial decay of lm at the transition points of C. The
quantity U is the net recombination rate, and accounts for recombination (R) and generation (G) effects in the semiconductor
material. Several models for U are proposed in the literature to describe R/G effects in a quantum-modified setting (see [1,4]).
As the impact of R/G phenomena is not very relevant for the class of applications we target in the numerical simulations of
Section 7, in the following we will assume, for sake of simplicity, that U ¼ 0. The extension of the proposed iterative solution
map to cover also the case where U – 0 can be carried out by properly adapting the ‘‘ lagging” procedure proposed for the DD
model in Section 4.4 of [19] and for the QDD model in Section 2.3 of [1].

3. The generalized Gummel map

In this section, we illustrate the fixed point map for the iterative solution of the QDD model (1). The method, proposed
and extensively validated in Refs. [11,10], is a consistent generalization of the classical Gummel map used in the decoupled
treatment of the DD equations [19], and for this reason it is henceforth denoted as Generalized Gummel Map (GGM). Com-
pared to the approach of Ref. [1], the GGM proposed in the present article exhibits two main differences. The first difference
is that the GGM, unlike the maps of [1,31], embodies in a natural way a numerical algorithm suitable for implementation. In
particular, the variational formulation used in Refs. [1,31] to deal with the coupled subsystem comprising Eqs. (1)1–(1)5, is
replaced in the GGM by a fixed point iteration (Inner Loop) which is the extension to the quantum-corrected setting of the
nonlinear iteration on the Poisson’s equation (1)1 that is usually carried out in the DD setting. The second difference is in the
method used to enforce uniform ellipticity in the treatment of the carrier continuity equations. In Refs. [1,31], these latter
equations are solved for the quantum quasi-Fermi potentials, and a proper truncation of the densities is used to ensure
the strict positivity of the diffusion coefficient. In the present approach, the continuity equations are solved for the Slotboom
variables as in standard DD theory [19], and the strict positivity of the diffusion coefficient is imposed by truncating the
quantum corrections due to the Bohm potentials.
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3.1. Preliminaries

Proceeding as in the case of the DD model (cf. [19], Section 4.3), we define the following constants:
a ¼ minðinf
Cþ

un; inf
Cþ

upÞ ¼ inf
Cþ

ua þ lnðhÞ;

b ¼maxðsup
Cþ

un; sup
Cþ

upÞ ¼ sup
Cþ

ua � lnðhÞ;
where ua is the externally applied bias and h :¼ nint=�n, nint and �n denoting the intrinsic concentration in the semiconductor
material and the scaling factor for carrier concentrations, respectively. For the purpose of the analysis of the existence of a
fixed point of the GGM, the above quantities should provide the upper and lower bounds for the invariant region to which
the fixed point belongs. With this aim, it is useful to symmetrize the bounding interval ½a; b� by introducing, as in Ref. [1], the
following constants:
m ¼ �kuakL1ðCþÞ þ lnðhÞ � 1 6 a; M ¼ �m ¼ kuakL1ðCþÞ � lnðhÞ þ 1 P b;
with m 6 0 and M P 0. For any nonnegative carrier concentrations n and p, we set w :¼ n1=2 and z :¼ p1=2, and for any
bounded potential u, we define the auxiliary variables
rnðw;uÞ :¼ w2e�u; rpðz;uÞ :¼ z2eu: ð4Þ
For any bounded quantum quasi-Fermi potentials un and up, we introduce the quantum Slotboom variables
q :¼ expð�unÞ; x :¼ expðupÞ; ð5Þ
in such a way that the generalized Maxwell–Boltzmann statistics (2) can be written in the equivalent form
n ¼ q expðuþ GnÞ; p ¼ x expð�ðuþ GpÞÞ: ð6Þ
Then, we define the closed convex set
K ¼ f½v ;w� 2 ðL2ðXÞ � L2ðXÞÞ : m 6 vðxÞ;wðxÞ 6 M; a:e: in Xg; ð7Þ
and for any function g and any fixed d 2 ð0;1�, we introduce the truncation operator
½g�d :¼maxðg; dÞ:
We also let V :¼ H1ðXÞ \ L1ðXÞ.

3.2. The outer iteration loop

Given a pair ½ ~un; ~up� 2 K , and d 2 ð0;1�, the GGM for the iterative solution of the QDD system (1) consists of the following
steps (Outer Loop):

Step 1: Use the fixed point iteration described in Section 3.3 to solve in the domain X the nonlinear system:
�divðk2$udÞ þw2
d � z2

d � D ¼ 0;

�d2
nDwd þwdð~un �ud þ 2 lnð½wd�dÞÞ ¼ 0;

�d2
pDzd � zdð~up �ud � 2 lnð½zd�dÞÞ ¼ 0;

8>><>>: ð8Þ

subject to the boundary conditions:

ud ¼ uD on CD; $ud � n ¼ 0 on CN;

wd ¼ n1=2
D on Cþ; wd ¼ 0 on C0; $wd � n ¼ 0 on CN ;

zd ¼ p1=2
D on Cþ; zd ¼ 0 on C0; $zd � n ¼ 0 on CN :

8><>: ð9Þ

Step 2: Define the regularized quantum corrections:

Gnd ¼ ~un �ud þ 2 lnð½wd�dÞ; Gpd
¼ ~up �ud � 2 lnð½zd�dÞ; ð10Þ

and the quantum-corrected potentials

Vnd :¼ ud þ Gnd ; Vpd
:¼ ud þ Gpd

: ð11Þ

Step 3: Solve in the domain X the linear, uncoupled continuity equations:

� divðlneVnd $qdÞ ¼ 0; ð12Þ
� divðlpe�Vpd $xdÞ ¼ 0; ð13Þ
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subject to the boundary conditions:

qd ¼ qD on Cþ; $qd � n ¼ 0 on C0 [ CN;

xd ¼ xD on Cþ; $xd � n ¼ 0 on C0 [ CN :

�
ð14Þ

Step 4: Update the quantum quasi-Fermi potentials by inverting (5):

un ¼ � lnðqdÞ; up ¼ lnðxdÞ: ð15Þ
3.3. The inner iteration loop

Given ½ bud; bwd; bzd� 2 ðVÞ3 and satisfying the essential boundary conditions in (9), with bwd P 0 in X and bzd P0 in X, the
inner loop for the solution of the nonlinear system (8) consists of the following steps:

Step A: Solve the nonlinear Poisson equation for the updated potential ud:
�divðk2$udÞ þ rn;dð bwd; budÞeud � rp;dðbzd; budÞe�ud � D ¼ 0; in X

ud ¼ uD on CD;

$ud � n ¼ 0 on CN :

8><>: ð16Þ

Step B: Solve the nonlinear Bohm equation for the updated square root of the electron concentration wd:

�d2
nDwd þwdð~un �ud þ 2 lnð½wd�dÞÞ ¼ 0; in X;

wd ¼ n1=2
D on Cþ;

wd ¼ 0 on C0;

$wd � n ¼ 0 on CN:

8>>>><>>>>: ð17Þ

Step C: Solve the nonlinear Bohm equation for the updated square root of the hole concentration zd:

�d2
pDzd � zdð ~up �ud � 2 lnð½zd�dÞÞ ¼ 0; in X;

zd ¼ p1=2
D on Cþ;

zd ¼ 0 on C0;

$zd � n ¼ 0 on CN:

8>>>><>>>>: ð18Þ
3.4. Abstract formulation of the GGM

The outer iteration loop described in Section 3.2 can be interpreted as the application of the fixed point map T : K ! K to a
given pair ½~un; ~up�, in such a way that the following relation holds
½un;up� ¼ Tð ~un; ~upÞ: ð19Þ
To characterize in detail the action of T, we need to introduce the operators that represent the various steps of the solution
map. For a given d 2 ð0;1�, we denote by U : K ! ðVÞ3 the operator associating with ½ ~un; ~up� the triple ½ud; ½wd�d; ½zd�d� through
the solution of (8) as described in Section 3.3. Then, we denote by Vn : ðL1ðXÞÞ3 ! L1ðXÞ and Vp : ðL1ðXÞÞ3 ! L1ðXÞ the
Fig. 2. A flow-chart of the GGM.
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operators associating with the triples ½ud; ~un; ½wd�d� and ½ud; ~up; ½zd�d� the bounded functions Vnd
and Vpd

through the com-
bined use of (10) and (11). Finally, we denote by R : L1ðXÞ ! V and W : L1ðXÞ ! V the operators associating with Vnd

and
Vpd

the solutions of the linear continuity subproblems (12)–(14)1 and (13) and (14)2. The composition of the action of the
above operators yields the following definition of the fixed point operator associated with the GGM
T :¼ ½� ln R � Vn � U; ln W � Vp � U�: ð20Þ
It is interesting to notice that this definition generalizes to the quantum-corrected setting the standard framework valid in
the case of the DD model, because in this latter case Vn and Vp coincide with the identity operator [20]. A flow-chart of the
GGM is depicted in Fig. 2.

4. Computational remarks on the GGM

We collect below some computational remarks on the various steps of the fixed point map introduced in Sections 3.2 and
3.3.

Let us start from the outer iteration loop.

4.1. Step 1

(1) It is shown in Ref. [1] (cf. Theorem 2.1) that problem (8) and (9) admits a unique solution ½wd; zd;ud ¼ udðwd; zdÞ� 2 ðVÞ3

satisfying the a priori estimates

kwdkL1ðXÞ; kwdkH1ðXÞ; kzdkL1ðXÞ; kzdkH1ðXÞ 6 K; ð21Þ
where K ¼ KðMÞ is a positive constant not depending on d.
(2) The same structure of Step 1 is maintained if the QDD model is replaced by other different quantum-corrected models
(cf. Ref. [11], Sections 4 and 6).
4.2. Step 2

The introduction of the truncation operator ½��d prevents the occurrence of singularities in the quantum-corrected poten-
tials introduced in (11). As a matter of fact, the numerical experiments of Section 7 show that the Bohm potentials Gnd

and Gpd

are bounded inside the device domain independently of the chosen value of d, and become unbounded only at the inversion layer
contact C0, consistently with the physical fact that, in the quantum-modified description, the carrier densities are exactly set
equal to zero at C0. This confirms the validity of (21) and agrees also with the conclusions drawn from the simulations re-
ported in Ref. [11].

4.3. Step 3

Using (6) and noting that Gn;d ¼ Gp;d ¼ 0 on Cþ, the boundary data qD and xD can be computed as
qD ¼ nD expð�uDÞ ¼ h expð�uajCþ Þ, xD ¼ pD expðuDÞ ¼ h expðuajCþ Þ. Then, using Lemma 3.2.2 [27], it can be shown that
BVPs (12)–(14)1 and (13) and (14)2 admit a unique solution pair ½qd;xd� 2 ðVÞ2 satisfying the essential boundary conditions
in (14) and the maximum principles
e�M
6 qdðxÞ 6 eM; e�M

6 xdðxÞ 6 eM a:e:in X: ð22Þ
Let us now consider the inner iteration loop.

(1) The inner loop is a consistent generalization to the QCDD setting of the nonlinear iteration that is usually carried out in
the DD setting, and provides a constructive computational approach to the variational formulation used in [1,31].
(2) System (16)–(18) is based on the combined use of the generalized Maxwell–Boltzmann statistics (6) and of the Gauss–
Seidel method in the nonlinear system (8). As a matter of fact, the Poisson Eq. (16) is nonlinear with respect to ud, unlike
the linear counterpart (8)1. This is the price to be paid for introducing an inner decoupling in system (8).
(3) Each nonlinear problem in (16)–(18) is solved by resorting to a properly damped Newton’s method and the numerical
approximation of the corresponding sequence of iterates is carried out by the Galerkin finite element method (see [11],
Section 5.1).
(4) A careful selection of the damping parameter in the linearization of the Bohm potential Eqs. (17) and (18) introduces a
parabolic regularization which ensures that a discrete maximum principle holds for the approximate solutions wd;h and
zd;h. This, in turn, implies that
wd;hðxÞ > 0 and zd;hðxÞ > 0 8x 2 X:

(5) Extensive numerical experiments carried out in [11] show that convergence of the inner loop may be slowed down by
the introduction of the damping strategy, especially in presence of significant quantum corrections at the inversion layer
boundary C0. In such a case, the use of vectorial acceleration algorithms gives rise to a substantial reduction of the com-
putational cost associated with the GGM iteration (see [10]).



1776 C. de Falco et al. / Journal of Computational Physics 228 (2009) 1770–1789
5. Existence analysis of a fixed point of the GGM

In this section, we address the issue of well-posedness of the various iteration steps of the GGM and we prove the exis-
tence of a fixed point of the map.

5.1. Well-posedness of the outer iteration

The well-posedness of the outer iteration described in Section 3.2 is based upon the fixed point analysis of Ben-Abdallah
and Unterreiter [1]. For fixed d 2 ð0;1�, step 1 adopts the system arising as the Euler–Lagrange equations associated with the
functional minimization procedure of [1], while steps 2, 3 and 4 are equivalent to the completion of the definition of the fixed
point mapping Td of [1]. Subsequent analysis in [1] demonstrates convergence as d! 0. In Ref. [1], it is shown that for each
fixed d 2 ð0;1�:

(i) The outer loop has a fixed point pair, defined by the pair of quantum quasi-Fermi levels un;up (cf. (15)).
(ii) There exist (non-constructive) bounds independent of d for the functions wd and zd (cf. (21)). This implies that ud can be

bounded independently of d because of the unique solvability of (8)1 for given wd and zd, and the same holds also for
the auxiliary variables rn;d, rp;d defined in (4), for which we have the following ‘a priori’ positive bounds
0 6 rn;dðxÞ 6 bn; 0 6 rp;dðxÞ 6 bp 8x 2 X; ð23Þ

where bn and bp are positive constants depending on K but independent of d.
The ‘a priori’ estimates (23) permit the definition of invariant regions for the composition mappings associated with the
inner iteration loop. This is the object of the following section.

5.2. Well-posedness of the inner iteration: ‘A Priori’ bounds and invariant regions

As defined, the inner loop proceeds by first solving the nonlinear Poisson equation, and proceeds to determine the Bohm
corrections. The Poisson equation is a gradient equation, and may be treated by the theory of upper and lower solutions
developed in [6] and summarized in Appendix A. Notice that the more standard results presented in [28] do not suffice
in our situation, since the multipliers of the exponentials in the first equation of (16) are not bounded away from zero.
The system for the Bohm corrections is not a gradient system; although it may be analyzed by the conventional tool of geo-
metric invariant regions, we are not aware of any published reference, and we develop this general step more fully. In addi-
tion, a proof is provided in Appendix B.2. We now discuss these situations in turn.

Lemma 5.1. Let rn;d and rp;d be given functions satisfying (23). Then, problem (16) has a uniquely defined solution ud within the
order interval ½umin;umax�, where the quantities umin � infXðuÞ and umax � supXð�uÞ are independent of d and the functions u
and �u are the solutions of the gradient equations
�k2Duþ bn expðuÞ ¼ Dmin ð24Þ
and
�k2D�u� bp expð��uÞ ¼ Dmax; ð25Þ
to which the boundary conditions (16)2-3 must be adjoined.

Proof. The signs of Dmin and Dmax determine the lower and upper bounds for ud. If either Dmin > 0, or Dmax < 0, it is straight-
forward to define the corresponding bound. However, in the general case, we must apply Lemma A.1 to obtain bounds for the
nonlinear Poisson equation. Formally, it is straightforward to see that these functions satisfy the defining conditions for
lower and upper solutions. The rigorous derivation of the well-posedness for u and �u, together with invariant interval
bounds, is obtained as follows. Standard convex analysis, as outlined in the proof of Lemma 3.1 of [18], yields existence
and uniqueness for u and �u. To prove that these latter functions are in L1, we remark that it is enough to show that the
exponential functions expðuÞ and expð��uÞ are bounded; in this case, Moser iteration theory [14], utilizing L1 right-hand
sides, implies that the solutions of the redefined linear boundary problems are also in L1. To illustrate why the exponential
function expðuÞ is bounded, it suffices to assume Dmin 6 0. It can be shown (we omit the details for brevity) that the convex
functional with effective L2 domain in the H1 affine space defined by boundary trace and restricted by expðxÞ 2 L2ðXÞ,
k2

2

Z
X
jrxj2dxþ bn

Z
X
fexpðxÞ � 1gdx� Dmin

Z
X
xdx;
for which u is a minimizer, increases if u does not coincide with its upper truncation by the supremum of its (bounded)
boundary values. This implies that the exponential is bounded from above; it is bounded below by zero. A similar argument
applies to �u when Dmax P 0. h
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Lemma 5.2. Let ~un and ~up be given functions in K and let ud be the unique solution of (16) as in Lemma 5.1. Then, problems (17)
and (18) have uniquely defined solutions wd and zd within the order intervals Q w ¼ ½0;wmax� and Qz ¼ ½0; zmax�, resp., wmax and zmax

being the following positive quantities independent of d
wmax ¼maxfsup
Cþ

w; exp½ðM þumaxÞ=2�g;

zmax ¼maxfsup
Cþ

z; exp½ðM �uminÞ=2�g:
Proof. As each of the nonlinear equations in Steps B and D of the inner iteration loop is not a gradient equation, we employ
the theory developed in Appendix B which extends to the case of non-gradient systems the approach of invariant regions. It
can be seen that the vector fields associated with the boundary value problems (17) and (18) are Carathéodory mappings and
are outward pointing on the respective intervals Q w;Qz. Then, applying Theorem B.1 allows one to conclude that each of the
maps defined above has a solution with range in the respective Q-interval. A continuous selection principle insures that the
mapping is well-defined, as discussed in Appendix C. h

Remark 5.1 (Positivity of w and z). Suppose one replaces the boundary values on C0 for w and z in (17)3 and (18)3 by strictly
positive values, bounded below by d. Then, using the same arguments as in Lemma 5.2, it can be proved that the solutions w
and z of the boundary value problems (17) and (18) belong to the contracted order intervals ½wmin;d;wmax�, ½zmin;d; zmax�, resp.,
where the strictly positive left endpoint wmin;d (depending on d) is defined as
wmin;d ¼minðd	; d; inf wjC0[Cþ ÞÞ;

d	 being the strictly positive quantity satisfying
supð�unÞ � infðudÞ þ 2 ln d	 < 0
(with an analogous relation for zmin;d.)
5.3. Existence of a fixed point for the generalized Gummel map

The analysis of Sections 5.2 and 5.1 has defined a consolidated mapping T : K ! K , in terms of:

(i) Components acting invariantly on the closed convex subsets of L2, defined pointwise by the Q � bounds (Inner Iteration
Loop, Lemma 5.1 and Lemma 5.2).

(ii) Components acting invariantly on K (Outer Iteration Loop, Section 5.1, item (i)).

Before continuing our analysis, we need the further following assumption (cf. [17]).

Assumption 5.1 (Continuous selection hypothesis). Let ðU;N; PÞ denote the components of the mapping U introduced in
Section 3.4. The homotopy mappings for N; P, starting with Laplace’s equation, and terminating in a specified solution, are
continuous in the L2 sense with respect to the functions ~un; ~up;ud.

A justification of this assumption is provided in Appendix C.
We are then able to state our main theoretical result.

Theorem 5.1. Under the hypotheses expressed in the bounds of inequalities (23) and the Continuous Selection hypothesis 5.1, the
fixed point map defined in (19) has a fixed point in K. Moreover, a solution triple u, n and p to the BVP (1)–(3) exists in
H1ðXÞ \ L1ðXÞ.

Proof. By design, the mapping T of Eq. (20) maps the closed convex set K in L2 � L2, introduced in Eq. (7), into itself. The
hypotheses of the Schauder fixed point theorem include the continuity and relative compactness of T in the topology of
L2 � L2. The relative compactness follows from the action of R and W as mappings with bounded range in H1ðXÞ. We shall
return to this point at the end of the proof. The continuity of the individual mappings is now considered. The continuity of
N; P is part of the content of the Continuous Selection hypothesis. The continuity of U is verified as follows. Given two arbi-
trary pair of elements ½rn;rp� and ½r	n;r	p� each satisfying (23) where we have suppressed d-dependence for clarity, consider
the images u and u	, resp. Since u�u	 is a test function for the weak formulation, one has
k2
Z

X
jrðu�u	Þj2dxþ

Z
X
rnðeu � eu	 Þðu�u	Þdx�

Z
X
rpðe�u � e�u	 Þðu�u	Þdx

¼
Z

X
ðr	n � rnÞeu	 ðu�u	Þdx�

Z
X
ðr	p � rpÞe�u	 ðu�u	Þdx:
The second and third terms on the left hand side are nonnegative. Since the term u�u	 has zero Dirichlet boundary trace,
the first term on the left hand side dominates cku�u	k2

L2 , for some constant c. Now, if we utilize the pointwise bounds sat-
isfied by u	 as stated in Lemma 5.1, and estimate the right-hand side terms by
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Z
X
ðr	n � rnÞeu	 ðu�u	Þdx

���� ���� 6 ðc=4Þku�u	k2
L2 þ c0kr	n � rnk2

L2 ;
with a similar estimate for the second term, we obtain the L2 Lipschitz continuity of U. The continuity of the mappings Vn;Vp

follows from their definition in terms of continuous composition. We now consider the continuity of the mappings:
Vn#q;Vp#x; where Vn;Vp are functions in L2 restricted by the pointwise bounds for inequalities (23) and those for the
range of the mappings N; P. To demonstrate continuity, we consider the first of the two equations. If Vn;V

	
n are given, satis-

fying the bounds just described, consider the solutions q;q	. Since q� q	 is a test function, the weak formulation leads to
Z
X
lneVn jrðq� q	Þj2dx ¼

Z
X
lnðeV	n � eVn Þrq	 � prðq� q	Þdx:
To verify L2 continuity, we employ standard inequalities to obtain, for some constant C, not depending on Vn;V
	
n;q;q	,
Z

X
lneVn jrðq� q	Þj2dx 6 C

Z
X
lnjeV	n � eVn j2jrq	j2dx: ð26Þ
We shall now verify sequential continuity. Hold V	n and q	 fixed and identify Vn and q with members of a sequence: Vk
n ! Vn.

To obtain the gradient convergence of the corresponding qk sequence, we use the fact that a sequence converges to q if any
subsequence has a further subsequence converging to q. Thus, in the right-hand side of (26), we may employ the Lebesgue
Dominated Convergence theorem to an appropriate pointwise convergent subsequence of fVk

ng to obtain the convergence to
zero of the right-hand side; the corresponding convergence to zero of the left hand side yields the stated sub-sequential con-
vergence. Note that we have used the pointwise bounds derived by the invariant region analysis in a fundamental way to
apply the Lebesgue theorem. The analysis for the second mapping parallels this.

We now discuss concisely the H1 bounds for q and x. Since we assume that the boundary data for q is defined in terms of
the (bounded) trace of an H1 function q, we simply use q� q as a test function. This yields:
Z

X
lneVn jrqj2dx 6

Z
X
lneVnrq � rqdx

���� ����:

Standard inequalities give a fixed gradient bound in terms of q. Since the trace is specified, one has the desired H1 bound,
hence the relative compactness. The arguments for x are similar. Schauder’s fixed point theorem [14, Corollary 10.2, p.
222] gives the existence of a fixed point. h
5.4. Theoretical remarks on the GGM

It seems clear that a viable approach to the analysis of the GGM proposed in this work is represented by the ‘a priori’
bounds (23) for rn;d;rp;d. These estimates permit a well-defined fixed point for the inner iteration map, and can be physically
justified by noting that rn ¼ q expðGnÞ. As the quantum correction Gn is expected to be negligible far from the material inter-
face C0 and to rapidly diverge towards �1 at C0, it is immediate to see that rn P 0 in X, the equality holding only at C0,
while elsewhere in the device domain rn tends to coincide with the Slotboom variable in the classical DD case.

One further issue concerning the solution of the Bohm Eqs. (17) and (18) not yet emphasized in the preceding discussion
is the positivity of the solution in the interior of the domain X, which in our analysis is the result of Lemma 5.2 and of the
related Remark 5.1. For an alternative approach, we refer the reader to [22], where a continuous minimum principle is
proved to hold for the solutions of the Bohm Eqs. (17) and (18), provided that the semi-linear terms satisfy a suitable lower
bound (cf. [22], Assumption B.3).

6. The discretized model and the numerical GGM

In this section, we describe the finite element discretization of the differential subproblems involved in the GGM intro-
duced in Sections 3.2, 3.3 and 3.4. With this aim, we denote by T h a given regular partition of the domain X (cf. [7]) into non-
overlapping triangles K of diameter hK , and we indicate by h ¼maxK2T h

hK the discretization parameter. Then, we introduce
the finite dimensional subspace Vh � V of affine finite elements over T h, and for a given function / : T h ! R, we let Ph/ 2 Vh

be the interpolant of / mapping into Vh.

6.1. The finite element maps

Each of the boundary value problems involved in the steps of the Inner and Outer iteration loops is approximated with the
Galerkin finite element method (GFEM) using basis functions in Vh.

Let us start with Step (1) of the Outer Iteration Loop of Section 3.2. This requires executing the Inner Iteration Loop of
Section 3.4.

Step (A) requires the solution of the nonlinear Poisson equation (16). This is done through the Newton method with the
introduction of a proper damping technique to ensure that the iteration is a descent method (cf. [35], Chapter 7). The result-
ing algebraic system is characterized by having a symmetric positive definite and diagonally dominant coefficient matrix,
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provided that a lumping procedure is employed to treat the zeroth order term arising from the linearization of (16). Steps (B)
and (C) are a critical issue of the algorithm, because of the need of maintaining positive solutions for the (square root) of the
carrier densities. With this aim, we have modified the standard Newton procedure by introducing a relaxation parameter, to
be chosen in such a way that the finite element approximation of the linearized boundary value problem enjoys a discrete
maximum principle (DMP). This is a sufficient condition to ensure positivity of the computed approximate carrier concen-
trations. Details of the procedure can be found in [11,10]. The finite element approximation of Steps (A), (B) and (C) defines
the numerical map Uh : ðVhÞ2 ! ðVhÞ3.

Once Step (1) is implemented as described above, the numerical approximation of the remaining linear continuity equa-
tions (Step (3) of the Outer Iteration Loop of Section 3.2) is carried out by the GFEM with harmonic average along the element
edges of the diffusion coefficient lm expð
Vmd;hÞ, m ¼ n; p [19,11,10]. The actual implementation is carried out with the addi-
tion of the change of discrete variables
nh ¼ qh expðVnd;hÞ; ph ¼ xh expð�Vpd;hÞ
in order to prevent the occurrence of numerical overflows. This approach is a consistent multi-dimensional generalization of
the classical one-dimensional Scharfetter–Gummel difference scheme [34]. It has the advantage of automatically introducing
an upwinding treatment of the carrier densities along triangle edges, which in turn ensures that the method satisfies a DMP
with positive nodal values of the carrier densities n and p, under the assumption that ln and lp are constant and that T h is of
Delaunay type (see [33,5,13] for a thorough discussion of this latter subject). The finite element approximation of Step (3)
defines the numerical maps Rh : Vh ! Vh and Wh : Vh ! Vh.

6.2. The numerical fixed point map

The numerical GGM can be written in abstract form as
Tn :¼ ½�lnhRh � Vn;h � Uh; lnhWh � Vp;h � Uh�; ð27Þ
where lnhð�Þ :¼ Phðlnð�ÞÞ and Vn;h, Vp;h are the discrete counterparts of the maps Vn, Vp introduced in Section 3.4.

6.3. Convergence for the numerical fixed point map

We discuss the general question of whether the fixed points xn of Tn converge to the desired fixed point x0 of T. Here, we
refer to the mappings defined in (27) and in (20), resp. In the linear theory, the Babuška–Brezzi inf–sup theory permits one to
transfer the corresponding question to one of best approximation, i.e., consistency of the approximating Galerkin subspace.
The Krasnosel’skii theory [24,25] is the analog for nonlinear differentiable problems: one may assert that xn ! x0 at the rate
at which Tn approximates T (discretization order), provided a set of stability conditions associated with the operator differ-
ential calculus are satisfied. It is known that the theory of Babuška–Brezzi is strictly implied by the theory of Krasnosel’skii.
In the present case, the maximal order of convergence with respect to the discretization parameter h in the energy norm is
OðhmÞ, with m 2 ð0;1� (cf. [19], Section 5.3.2), that is exactly the expected order for the linear mixed boundary value problem.
An extensive analysis is required to establish the hypotheses, summarized in [19, p. 119]. Although Tn differs from the map-
ping of the classical model in its inclusion of the quantum correction terms, we expect a carry-over of the convergence rate,
for fixed d > 0. The verification is outside the scope of the current study.

7. Numerical assessment of the GGM

In this section, we present a set of numerical examples to validate the GGM procedure in the simulation of realistic nano-
scale devices. In Section 7.1, we analyze the convergence properties of the inner loop of the GGM procedure applied to a one-
dimensional (1D) test case, with the purpose of demonstrating the plausibility of assumptions (23). In Section 7.2, we study
the convergence properties of the full GGM algorithm applied to the simulation of a two-dimensional (2D) device with the
same geometry as in Fig. 1, with special care on the dependence of such properties on the truncation parameter d. Finally, in
Section 7.3 we illustrate the relevance of QCDD models for the simulation of advanced CMOS structures. With this purpose, a
nanoscale device with intrinsically 3D geometry is presented together with a short discussion of its electrical characteristics
as predicted by computations performed using the DD, QDD and Schrödinger–Poisson DD (SPDD) models.

7.1. A nanoscale one-dimensional MOS capacitor

In this section we consider a 1D test case that can be regarded as a cross–section of the device of Fig. 1 in the direction
connecting the bulk contact (bottom portion of Cþ) to the interface contact C0. As no current is expected to flow across the
interface, the quasi-Fermi levels are known a priori to be constant, so that we only need to solve the Poisson–Bohm subsys-
tem (8) and only the Inner Iteration Loop of the GGM needs to be executed. The device length is of 100 nm, the doping is of
p-type and has a concentration of 1021 m�3, and the boundary conditions for the potential are ubulk ¼ 0 V, uinterface ¼ 0:1 V. A
nonuniform mesh with a step-size varying gradually from a maximum of 7:9168 � 10�9 m at the bulk contact to a
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minimum of 1:7347 � 10�14 m at the interface side of the device was used for the computations. Fig. 3 (left) shows that the
dependence of the computed electron density on the truncation parameter d is almost negligible, and that the variation of
the quantum correction Gn significantly occurs only across the mesh element closest to the interface (Fig. 3, right). Fig. 4 (left)
shows that the a priori bound (23) for rn is actually consistent with the physics, as rn ¼ 1 in the whole device except in the
region corresponding to the steep boundary layer at the interface where it rapidly decreases to rn ¼ 0. Finally, Fig. 4 (right)
shows that decreasing the value of d only slightly affects the convergence rate of the iteration scheme. Nevertheless, given
the almost linear rate of convergence, the use of vector extrapolation techniques is expected to produce a noticeable reduc-
tion in the number of required iterations (see Ref. [10]).

7.2. Experimental convergence analysis on a two-dimensional device

In this section, we perform an experimental convergence analysis of the Outer Iteration Loop of the GGM. Reported com-
putations refer to the 2D simulation of a device with the same structure as that of Fig. 1, having length in the x and y direc-
tions equal to 75 nm and 100 nm, respectively. The piecewise constant doping profile of the device is shown in Fig. 5. The
n-type dopant in the source and drain regions has a concentration of 1025 m�3 while in the rest of the domain the doping
is of p-type and has a concentration of 1021 m�3. Also shown in Fig. 5 is the nonuniform computational mesh which has a
step-size gradually decreasing near the upper side of the domain boundary. The computational results in Figs. 6 and 7 refer
to the device biased in the off-state condition. The applied voltages in this case are 0.1 V at the drain and gate contact and 0 V
at the source and bulk contacts. In this regime, there is no conductive path between the source and drain contacts, which can
be clearly seen from Fig. 6(c) where the potential barrier under the gate contact is visible and in Fig. 6(b) which shows that
there is no inversion layer at the gate. It is to be noted that, consistently with the discussion carried out in the theoretical part
of the present paper, the Poisson and Bohm equations have been solved with a Dirichlet boundary condition applied at the
gate contact (see Fig. 6(b) and (c)) while the current continuity equation has been solved with an homogeneous Neumann
boundary condition at the gate contact, as is apparent from the spatial distribution of the electron quasi-Fermi level shown in
Fig. 6(a). Fig. 7 shows the spatial distribution of the electron Bohm potential Gn in the device in the off-state condition, cor-
responding to two different values of the truncation parameter d. The results show that Gn is vanishing everywhere in the
domain except in the steep boundary layer near the gate contact, where it attains an absolute value of about 1.5 V, and that
the value of Gn at the contact depends on the truncation parameter, becoming larger, as expected, as d! 0. Fig. 8 shows the
quantity ek defined as
ek :¼maxðkduðkÞkL1ðXÞ; kduðkÞn kL1ðXÞ; kduðkÞp kL1ðXÞ; kdGðkÞn kL1ðXÞ; kdGðkÞp kL1ðXÞÞ ð28Þ
Fig. 3. Left: electron concentration in the device; right: Bohm potential near C0.

Fig. 4. Left: spatial distribution of rn; right: convergence rate of the inner loop of the GGM as a function of the truncation parameter d.



Fig. 6. Simulation results for Vdrain ¼ Vgate ¼ 0:1 V.

Fig. 5. Doping profile and computational grid.

Fig. 7. Results for Vdrain ¼ Vgate ¼ 0:1 V.
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as a function of the iteration number k. In (28), dð�ÞðkÞ denotes the increment of each quantity from iteration k to kþ 1. From
Fig. 8 one can see that the convergence rate of the outer loop is almost linear and that it changes slightly when the truncation
parameter is modified.

Figs. 9 and 10 show results of a simulation performed with the device biased in the on-state condition. By comparing
Fig. 6(c) with Fig. 9(b) one may notice that the potential barrier between source and drain has disappeared. This causes elec-
trons to accumulate near the gate contact, forming the inversion layer which is visible in Fig. 9(a). Fig. 9(c) displays a close-
up view of the channel of the device with the direction (arrows) and magnitude (color) of the electron current density and
shows that the shift of the charge peak due to the boundary condition imposed on C0 causes the current to flow away from
the boundary. The graphs in Fig. 10 show that the Bohm potential in the on–state regime becomes very large in absolute
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Fig. 8. Convergence history for Vdrain ¼ Vgate ¼ 0:1 V.

Fig. 9. Simulation results for Vdrain ¼ 0:1 V;Vgate ¼ 0:7 V.

Fig. 10. Results for Vdrain ¼ 0:1 V;Vgate ¼ 0:7 V.
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value (more than 50 V) and negative at the gate contact, but still vanishes elsewhere in the device domain as was the case in
the off-state regime. It is also to be noticed that, compared to the very large value attained by Gn at this bias, its variation due
to the choice of the truncation parameter is almost negligible. Finally, Fig. 11 shows that the convergence rate of the outer
loop is almost linear also in the on-state condition, and that it changes slightly when the truncation parameter is modified.
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Fig. 11. Convergence history Vdrain ¼ 0:1 V;Vgate ¼ 0:7 V.
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7.3. QCDD simulation of a three-dimensional device

The purpose of this section is to demonstrate the relevance of including the quantum correction terms Gn and Gp in the
simulation of a realistic nanoscale device in terms of their impact on the electrical performance of the device. Also, to assess
the performance of the QDD model both in terms of accuracy and computational cost, we compare the simulation results
obtained by the QDD model with those of both a simpler (thus less computationally expensive) model, namely the DD model,
and those of a more accurate (but more computationally complex) model, namely the SPDD model [11].

The chosen device is a 3D double-gate MOSFET [36] with the following geometry:

� Silicon film thickness TSi ¼ 10 nm.
� Gate length Lg ¼ 13 nm, channel length LCH ¼ 11 nm.
� Oxide thickness TOX ¼ 2 nm.
� Total Source-to-Drain length L ¼ 49 nm.
� Width W ¼ 20 nm.

The doping profile D is a piecewise constant function and has a value equal to NþD ¼ 5� 1025 m�3 in the source and drain
regions and equal to �N�A ¼ �1021 m�3 in the channel region, respectively. These values are consistent with the indications
of the latest release of the ITRS [8].

Fig. 12 displays the device geometry and the finite element mesh used in the numerical computations, while the log scale
values of the doping profile are tabulated on the right-hand side color-bar. The computational grid consists of 89136 tetra-
hedra (18081 mesh nodes). Fig. 13 shows the I–V (current–voltage) curves obtained from full 3D simulations with the DD,
QDD and SPDD models, respectively, with the purpose to highlight the non-negligible difference between a classical and a
quantum-corrected simulation for the given device geometry which, in turn, clearly indicates the importance of taking into
account electrostatic quantum effects in such aggressively scaled devices. In Fig. 13(a) on the x-axis the value of the applied
Gate voltage Vg is tabulated, while on the y-axis the value of the computed Drain current is plotted in logarithmic scale for a
value of the voltage applied at the Drain of Vd ¼ 10 mV. From this picture one can notice that the curve corresponding to the
QDD model results has degraded slope in the sub-threshold region in comparison to the prediction of the DD model.
Fig. 13(b) shows the results of the same computations as above but with the y-axis in linear scale; from this picture one
can see that the QDD model predicts a larger value of the threshold voltage compared to the classical simulation, which
is an expected consequence of the increased effective oxide thickness. Although both effects are underestimated by the
QDD model in comparison to a more accurate SPDD simulation, one might argue that the largely inferior computational ef-
fort required by the QDD model compared to the SPDD model for a full 3D simulation more than compensates the slight
inaccuracy in the current prediction. In fact, the computation of each bias point required about 10 min with the DD model,
Fig. 12. Device geometry, doping profile and computational mesh.



Fig. 14. Electron density in the device computed by the QDD model at the biasing conditions Vd ¼ 0:01 V and Vg ¼ Vs ¼ 0 V; lighter shades of gray indicate
higher values of the density.

Fig. 13. Drain current Id vs. Gate voltage Vg for the biasing conditions Vd ¼ 0:01 V and Vs ¼ 0 V.
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up to 45 min with the QDD model and more than 3 h with the SPDD model.4 Finally, Fig. 14 shows the electron density in the
device computed by the QDD model at the biasing conditions Vd ¼ 0:01 V and Vg ¼ Vs ¼ 0 V, the charge peak-shift effect being
evident in both pictures.

8. Conclusions and future perspectives

In this article, we have addressed the analysis of existence of a fixed point of the functional iteration procedure (GGM) for
the solution of QCDD models, proposed and thoroughly numerically investigated in [11]. Several numerical examples have
also been included to support the theoretical conclusions. The GGM has the benefit of maintaining the same functional struc-
ture irrespective of the specific choice of the quantum-corrected model, and, in the case of the QDD model, to provide an
effective computational tool for the numerical solution of the variational formulation proposed in Refs. [1,31] to treat the
quantum correction. The principal instruments used in the analysis are (i) the introduction of a truncation operator; (ii)
the extension of the theory of invariant regions, used in [19] in the DD case; and (iii) a homotopy method based on the gen-
eral theory developed in [17] to select the solution of each equation yielding the quantum corrections. It is expected that,
with some modifications, the framework proposed in the present work can be extended to deal with other quantum-cor-
rected models, as considered in [11,23,29,30]. This extension will be the object of a future study.

Appendix A. Upper and lower solutions for gradient equations

We cite in this section the essential results developed in [6]. Let X � RN be a bounded domain with piecewise-C1-bound-
ary oX, and CN � oX be such that CD ¼ oX n CN is a relatively open C1-portion of oX with positive surface measure. Consider
the boundary value problem (BVP)
4 The
� divðaðxÞruÞ þ f ðx;uÞ ¼ 0 in X; ðA:1Þ

u ¼ uD on CD;
ou
om
þ gðx;uÞ ¼ 0 on CN; ðA:2Þ
where a 2 L1ðXÞ with aðxÞP l > 0, and o=om denotes the outward conormal derivative on CN . Let H :¼W1;2ðXÞ denote the
usual (real) Sobolev space, and let H0 � H be the subspace of H defined by
code used for the simulation is a set of Octave scripts and was run on a MacBook laptop with a 2 GHz CPU and 1 Gb RAM with Octave 2.9.17.
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H0 ¼ fu 2 Hjcu ¼ 0 on CDg;
where c : H! L2ðoXÞ is the trace operator which is linear and compact. The corresponding dual spaces are denoted by H	 and
H	0. It is known that kuk2

H0
¼
R

X jruj2dx defines an equivalent norm on the subspace H0. We assume the boundary values uD to
be the restriction of a function ~uD 2 H, i.e., ~uDjCD

¼ uD.

(C1) We assume the nonlinearities f and g in (A.1) and (A.2), respectively, to be of Carathéodory type. We assume f and g
are increasing in u.

The weak formulation of the BVP (A.1) and (A.2) reads as follows.

Definition A.1. u 2 H is called a solution of the BVP (A.1) and (A.2) if

(i) u ¼ uD on CD, and
(ii)

R
X aru � rwdxþ

R
CN

gðx; cuÞcwdCþ
R

X f ðx;uÞwdx ¼ 0; 8 w 2 H0:

Let us recall for convenience the notion of (weak) super- and sub-solutions.

Definition A.2. �u 2 H is called a supersolution of the BVP (A.1) and (A.2) if

(i) �u P uD on CD, and
(ii)

R
X ar�u � rwdxþ

R
CN

gðx; c�uÞcwdCþ
R

X f ðx; �uÞwdx P 0; 8 w 2 H0 \ L2
þðXÞ;

Similarly, u 2 H is a subsolution if the reversed inequalities in Definition A.2 hold with �u replaced by u. We make the fol-
lowing additional hypotheses.

(C2) There exist a supersolution �u and a subsolution u of the BVP (A.1) and (A.2) such that u 6 �u.
(C3) There is a p 2 L2

þðXÞ such that jf ðx; sÞj 6 pðxÞ for a.e. x 2 X and s 2 ½uðxÞ; �uðxÞ�.
(C4) There is a q 2 L2

þðCÞ such that jgðx; sÞj 6 qðxÞ for a.e. x 2 C and s 2 ½cuðxÞ; c�uðxÞ�.

The following lemma was established in [6].

Lemma A.1. Under the hypotheses (C1)–(C4), the BVP (A.1) and (A.2) has a uniquely defined solution u within the order interval
½u; �u�.
Appendix B. Invariant regions for non-gradient systems

We consider in this section the following nonlinear system of m steady-state nonlinear reaction-diffusion equations on a
bounded Lipschitz domain X � RN
Du ¼ fð�p;uÞ;u ¼ ðu1; . . . ; umÞT ; f ¼ ðf1; . . . ; fmÞT ; ðB:1Þ
where D denotes the Laplacian, acting on each component. System (B.1) is supplied with mixed boundary conditions as
follows.

(i) Dirichlet Boundary. There is a (relatively open) boundary component CD such that the restriction of u to CD agrees with
a smooth function û 2 C1ðXÞ; with range in Q:
cðu� ûÞjCD
¼ 0: ðB:2Þ

Here, c denotes the trace operator.
(ii) Neumann Boundary. The normal derivative of u vanishes in a weak sense on the complement of CD with respect to oX.
This is a natural boundary condition subsumed in the weak formulation.

Our aim is to extend to (B.1) the theory of super-and sub-solutions for linear elliptic equations.

B.1. Generalities

For this, we characterize the structure of the vector field f.
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(1) Carathéodory Mapping (CM) Define the slab,

Q ¼
Ym

1

½ai; bi�; ai < bi; i ¼ 1; . . . ;m;

in Rm and the Cartesian product, D0 ¼ X� Q . f is assumed to be a Carathéodory mapping (CM) on D0.
(2) Outward Pointing on the Boundary of Q (Property OP).

If ui ¼ ai; i ¼ 1; . . . ;m; then f ið�; u1; . . . ;umÞ 6 0;

if ui ¼ bi; i ¼ 1; . . . ;m; then f ið�; u1; . . . ;umÞP 0:

The following result will be proved in the following section.

Theorem B.1 (Existence, with range in invariant regions). Suppose f satisfies properties CM and OP, and is L2 bounded as a
composition mapping. Then (B.1) and (B.2) has a weak solution u with range in Q.
B.2. A trapping principle for semi-linear elliptic systems

We consider again system (B.1). This framework has a significant implication, due to Krasnosel’skii. We state it in the
form of a lemma.

Lemma B.1. For a Carathéodory mapping h, if h maps (a subset of) L2ðXÞ into L2ðXÞ, via the composition, HðvÞ ¼ hð�p;vÞ; then H
defines a continuous mapping from L2 to L2.

This was shown by Krasnosel’skii [24, Theorem 2.1, p. 22] (see also [12, p. 77]).
Since we may identify the components of fð�p;uÞ with elements of L2, then we may identify these components with con-

tinuous linear functionals on H1. In this identification, it is necessary to use the equivalent norms on Yi ¼ H1, given by
ðv ;wÞYi
¼
Z

X
rv � prwdxþ

Z
CD

cvcwdr: ðB:3Þ
In order to define what is meant by weak solution, we introduce the inner product on Y ¼
Qm

1 Yi as
ðv;wÞY ¼
Xm

1

Z
X

pirv i � prwidxþ
Xm

1

Z
CD

cv icwidr: ðB:4Þ
We identify the zero trace subspace of Y:
Y0 ¼ fv 2 Y : cvjCD
¼ 0g:
Then u is a weak solution of (B.1) and (B.2) if u satisfies (B.2) and the relation,
ðu;/ÞY þ hfð�p;uÞ;/i ¼ 0;8/ 2 Y0: ðB:5Þ
Here, the duality relation is used with component summation.

B.2.1. The variational inequality
We begin by establishing some notation. We set
K0 ¼ fv 2 Y : cðv � ûÞjCD
¼ 0;vðxÞ 2 Q for almost all x 2 Xg: ðB:6Þ
The variational inequality can be formulated as: Determine u 2 K0 such that, if FðuÞ ¼ fð�;uÞ, then
hFðuÞ;v � ui þ ðu;v � uÞY P 0; 8v 2 K0: ðB:7Þ
Parallel to Theorem B.1 is the following proposition.

Proposition B.1. Suppose f satisfies property (CM), and is componentwise L2 bounded. Then the variational inequality (B.7) has a
solution u 2 K0.

We shall deduce Proposition B.1 from quadratic minimization, in conjunction with the Schauder fixed point theorem in
the following subsections.

B.2.2. Existence for the variational inequality
We define the closed convex sets Ki � Yi, i ¼ 1 . . . ;m, by
Ki ¼ fv 2 Yi : cðv � ûiÞjCD
¼ 0;vðxÞ 2 ½ai; bi� for almost all x 2 Xg: ðB:8Þ
We notice that
K0 ¼
Ym

1

Ki:
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If K0 ¼ fv 2
Qm

1 L2 : vðxÞ 2 Q for almost all x 2 Xg; we define a map
T : K0#K0
as follows. Set Tw ¼ u if u solves the decoupled variational inequality: Determine u 2 K0 such that, if FðwÞ ¼ fð�;wÞ, then
hFðwÞ;v � ui þ ðu;v � uÞY P 0; 8v 2 K0: ðB:9Þ
In order to analyze this inequality, we first isolate an arbitrary inequality of the decoupled system. Using the notation, for
fixed i,
ui ¼ u; v i ¼ v; wi ¼ w; FiðwÞ ¼ G; ûi ¼ û;
we determine a unique element v0 via the Riesz representation theorem such that
hG;/i ¼ ðv0;/ÞYi
: ðB:10Þ
By standard results concerning quadratic minimization over closed convex sets, u may be characterized as the unique ele-
ment minimizing the functional,
UðvÞ ¼ kv � v0k2 � kv0k2
;

over Ki. We easily obtain an ‘a priori’ estimate for u 2 Yi.
We are now ready to verify the existence of a solution of the variational inequality. In order to apply the Schauder fixed

point theorem, we require the components of the image of T to lie in closed, compact sets in L2, and for T to be continuous
(see [14, Theorem 10.1]). The intersection of Ki with the ball in Yi, described by an ‘a priori’ estimate, is relatively compact in
the closed convex set K0 �

Qm
1 L2 by the compact embedding. Thus, it remains to verify the continuity of T. By appropriately

subtracting the inequalities corresponding to two distinct solutions u	 ¼ Tw	;u		 ¼ Tw		, we finally obtain, for some positive
constant C,
ku	 � u		k2
Y 6 CkFðw	Þ � Fðw		Þk2
By use of Lemma B.1, we infer the continuity of T on
Qm

1 L2. Application of the Schauder theorem concludes the proof.

B.2.3. Major equivalence theorem
In this section, we use the property (OP) satisfied by the vector field f to assert that a solution of the variational inequality

(B.6) is a weak solution of the system (B.1) and (B.2), i.e., satisfies (B.5). For details, cf. [19].

Theorem B.2. Let ðu1; . . . ;umÞT be a solution of (B.7). Then, under the hypothesis (OP) on f, ðu1; . . . ;umÞT is a solution of (B.5). In
particular, Theorem B.1 holds.
Appendix C. Continuous selection hypothesis

The justification of Assumption 5.1 is outlined in this section. Without loss of generality, we consider the second equation
of (8). If the consolidated Dirichlet boundary is denoted by CD, we denote by wbdy the consolidated Dirichlet boundary data.
We write the trivial homotopy for the second equation of (8), inclusive of boundary condition, in the operator format (with
subscripts suppressed for simplicity):
Fðw; kÞ ¼ ½�d2Dwþ kf ðx;wÞ ¼ 0;Dirichlet trace ¼ wbdy�; 0 6 k 6 1:
The first component of ½�; �� is understood in the weak sense: H1 is mapped into its dual ½H1�	. We summarize the theory of
[17], especially Theorem 3.1. Under a minimal set of hypotheses:

(i) Fw is locally Lipschitz continuous;
(ii) there are locally defined linear approximate right inverses G of Fw, which are uniformly bounded in norm;

(iii) the family fGg satisfies an approximation of the identity condition;

it is demonstrated in [17] that a discrete homotopy path exists over the interval ½0;1� for F, permitting the precise ‘cap-
ture’ of a zero of Fð�;1Þ. The argument presumes a sufficiently small residual at k ¼ 0, and employs a predictor/corrector
‘algorithm’ with N0 steps to reach a starting iterate in the domain of convergence of Newton’s operator method at k ¼ 1.
The predictors are denoted fv igN0

1 and the correctors, including the starting iterate, fwigN0
0 . The norm of the initial residual

is denoted by q�1. By the construction, elaborated below, this quantity can be chosen arbitrarily small. One notes that The-
orem 3.1 of [17] is a rigorous analytical result. This result may be used:

(1) for local uniqueness;
(2) for establishing continuity of the mapping N.



1788 C. de Falco et al. / Journal of Computational Physics 228 (2009) 1770–1789
The critical step in the construction is the definition of the approximate right inverse of the derivative of Fw at each step.
We note that the inverse used during the corrector/predictor step, denoted by H in [17], is required to satisfy a less stringent
approximation of the identity condition than the inverse used for the predictor/corrector step, denoted by G. The algorithm is
outlined now. One begins by determining the solution w0 of Laplace’s equation with specified boundary values wbdy. This
produces a zero residual, which permits a starting q�1 satisfying inequalities (2.16)–(2.17) of [17]. The Fréchet derivative
of F is elementary when k ¼ 0, and simply reproduces the Laplacian part of F, independent of the calculated w0. Homoge-
neous Dirichlet boundary conditions on the Dirichlet boundary CD are required for the specification of the linearizations.
Each of the approximate right inverses is denoted by the y notation. Initially, one defines: ½Fwðw0;0Þ�y :¼ ½Fwð�;0Þ��1. After this
obvious step, the algorithm requires definitions after both the Euler predictor and Newton corrector steps (cf. (3.7)–(3.8) of
[17]). Thus, if the predictor vk has been defined, one forms the residual Fðvk; kkÞ, and the approximate right inverse, via the
first two terms of the virtual Neumann series for perturbations, as we now explain. For clarity, we suppress the second com-
ponent (always zero) of the derivative mapping of F. Also, define the negative part g� of a function g to be the minimum of g
and zero so that g� 6 0. Set
Ck ¼ ½Fwðwk�1; kk�1Þ þ ðkk�1½fwðvkÞ � fwðwk�1Þ�þ þ Dk½fwðvkÞ�þÞI�y:
Note that we have used the property that the approximate right inverses are invertible, and remain so under perturbation of
Fw by positive multipliers of the identity. Inductively update the approximate right inverse by the formula:
½Fwðvk; kkÞ�y ¼ Ck � Ck½kk�1½fwðvkÞ � fwðwk�1Þ�� þ Dk½fwðvkÞ���Ck: ðC:1Þ
This is the truncated virtual Neumann series. Now define wk by the Newton step (the notation G is used for emphasis):
wk ¼ vk � Gðvk; kkÞFðvk; kkÞ: An even simpler construction is used to update from corrector to predictor (cf. (3.7) of [17];
the updated approximate inverse utilizes the actual inverse: ð�d2Dþ kk½fwðwkÞ�þIÞ�1. If X0 denotes the Dirichlet zero trace
functions in H1, analysis shows that the operators G are bounded from X	0 to X0; at each stage a multiplier (not exceedingffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ck

p
) of the preceding bound is introduced. One computes, for J the Riesz map in an equivalent norm:

ck ¼ kJk
2fsup j½fwðvkÞ � fwðwk�1Þ��j þ Dkj½fwðvkÞ��jg2 in the predictor/corrector case. It is elementary that ck 6 c, for a fixed po-

sitive constant c. The hypotheses on the corrector/predictor map lead to a simple uniform bound in terms of the Laplacian.
When restricted to L2, the approximate inverse operators are positive definite, symmetric, and bounded. The maximum
bound MG for the family fGg defined in this way does not exceed d�2kð�DÞ�1k, multiplied by the product expansion factor
above:

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ c

p
. The approximation of the identity condition is now routine, as is the Lipschitz condition. At the completion of

the homotopy, the approximate inverses are defined in a manner similar to (C.1), with Dk suppressed, and all iterates defined
as correctors. The argument that MG remains a valid bound for the inverse norms now requires an infinite product estimate
based on the convergence estimate (2.18) of [17]:
c0 ¼
Y1

1

ð1þ akÞ 6
MG

d2kð�DÞ�1k

 !2

:

Here, ak is bounded by cq�12�k for some constant c, as follows by estimating the terms kwk �wk�1k2
X0

via the analysis of [17].
The preceding discussion leads then to MG as defined if q�1 satisfies expð2cq�1Þ < 1þ c. It follows that, at the termination of
the predictor/corrector steps, one is in the domain of convergence of the approximate Newton method completely defined
above. This permits the identification of a solution in an unambiguous manner. Continuity of N in L2, required for the Schau-
der theorem, follows from the explicit definition of the approximate inverses via a formula analogous to (C.1).
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